
International Journal of Electronics Engineering, 1(2), 2009, pp. 203-207

*Corresponding Author: dhirajsangwan@gmail.com

Hardware and Software Co-Synthesis Environment

for Embedded Systems

Rashmi Priyadarshini & B. S. Chawla
Department of Electronics and Communication Engg.,

Indira Gandhi Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi

Abstract: This paper presents a hardware and software co-synthesis environment for embedded systems. The environment
uses two graphical formalizations as specification languages and synthesizes code for a multiprocessor rapid prototyping
board. The two major problems discussed in this paper are: (a) realization of an efficient distributed execution of the specific
system (b) development of an automated interface code generation for hardware and software of the system under design.

1. INTRODUCTION

Embedded systems are applied in every area of life and their
importance increases rapidly. But the development of such
systems is often costly and time intensive, especially when
their functionality can only be tested in the late phases of
the development process. For example, more than 50% of
all complaints about electronic devices in automobiles are
due to conceptional error made during the design and
specification phases. Rapid Prototyping board can help to
detect and correct defective specifications thereby
preventing expensive design-iterations during the
development of a system.

The paper is mainly concerned with those embedded
control applications (ECAs) that require fast reaction to
asynchronous external events. Examples for such
applications are collision avoidance systems or controllers
for fast run manufacturing cells.

One part of this system is a “universal prototype”
hardware architecture that consists of an FPGA field and
several processor nodes. Each node is equipped with a multi-
threaded implementation of the SPARC processor called
MSPARC, which is optimized for embedded control
applications. However, this paper concentrates on the second
part of the system, a hardware and software co synthesis
environment where two graphical formalism, real time
symbolic timing diagrams and statecharts, are used to
specify ECAs and combine them with tools for generating
interfaces between hardware and software components.

2. ARCHITECTURE OVERVIEW

The architecture currently developed in the project is shown
in Figure 1. Each node contains a MSPARC (Multithread
Scalable Processor Architecture)-processor and a 2nd-level
cache. SPARC (Scalable Processor Architecture) is a RISC
microprocessor instruction set architecture originally

designed in 1985 by Sun Microsystems. The dual ported
RAM (DPR) is used to communicate with external devices
and to schedule context-switching. Unlike other
architectures, the FPGAs (Field Programmable Gate Array)
are viewed as the system’s master and the processors as
coprocessors to the FPGAs.

The MSPARC is compatible to a standard SPARC
processor [14], and additionally supports multi-threading
for up to four contexts on chip. The MSPARC has a five
stage pipeline and an 8KB on chip instruction cache. The
cache is statically divided into four parts, one for each
context. Context switching is executed by hardware and can
be achieved in one processor cycle. Because the new context
starts with an (almost) empty pipeline, the worst case penalty
for context switching is five cycles. This fast switch
mechanism is attained by duplicating the important register
file. A round robin strategy is used to determine the context
that will be switched to.

The MSPARC also provides an embedded control
mode, in which the environment (in our case the FPGAs)
can control with active signals (one for each context) which

Figure 1: The Hardware Architecture

Node

Node

Node

 Dual-Ported RAM

FPGA
Field

 Interface

Timer

Node

204 International Journal of Electronics Engineering

The three kinds of events are considered: the first type
does not require elaborate computation but merely causes
updates of actuators of the systems state (control dominated
reactions to events) and /or events for which software would
be to slow to perform these updates. These events are usually
handled by interface components. The second kind of events
requires complex computation and is therefore handled by
threads. The start-up time of the appropriate thread is part
of the response time to this event and is not negligible on
usual architectures due to expensive software scheduling
and context switching .These threads will be assigned to
their own context on the MSPARC-processors in the
architecture resulting in startup times of just one cycle [1].
The third kind of events requires handling by software, too,
but the time constraints are such that the startup time of
threads can be tolerated. For scheduling and dispatching
purposes this context will be used in the same way as the
(only) context in a single-threaded uniprocessor system
would be. [4]

3.2. Specification

Statecharts are used to design and implement threads and
interface components [8]. State chart is a graphical
specification formalism, which is widely used to design
reactive systems. The control component can be specified
either by statecharts or by real time symbolic timing
diagrams (RTSTD) [5]. RTSTD is graphical specification
formalism similar to the well known diagrams but in contrast
to other formalized timing diagram approaches. [2]

RTSTD consists of a set of waveforms and constraints.
A waveform defines a sequence of expressions for a signal,
which describes a possible temporal evolution. The point
of change from validity of another expression is called a
symbolic event. Events are normally not ordered across
different waveforms, but constraint arcs can be used to
impose such an ordering. A constraint can be a simultaneity
constraint (two events must occur simultaneously), a conflict
constraint (two event may not occur within a given time-
interval), a leads to constraint (an event e2 may not occur
later than time t units after an event e1), or a precedence
constraints (event e2 may only occur if preceded by event
e1 within a given time interval). Strong constraints express
requirements which must be satisfied by the component
under design, while weak constraints express an expectation
on the behavior of the environment. Figure 3, shows a simple
handshaking protocol specification, where the strong
constraints are printed as black arcs while weak constraints
are printed in grey.

context to switch to, and a single switch signal is used for
each processor to initiated context switching. Additionally,
threads can signal the termination of computation to the
environment with done signals. If there are no contexts
marked as active by the FPGAs, the MSPARC will halt
execution. [1]

The actual realization of this architecture is divided into
four stages. Stage 1 consists of an FPGA-board connected
via a serial interface with a workstation [2]. Stage 2 consists
of connection board with a dual–ported RAM and some
registers for thread control. The interface of this board to
the FPGAs will be exactly the same as it would be if four
MSPARC–processors were connected to them. In stage 3,
one MSPARC–processor is connected to FPGA board,
whereas in stage 4, the complete multiprocessor architecture
will be built.

Figure 2: Basic Template for ECAs

Thread_1

Thread_2

Application

Software Hardware Environment

Interlace_1

Interlace_2

Interlace_3

Controller

Device_1

Device_2

Device_3

3. SPECIFYING REACTIVE SYSTEMS

When hardware/software applications with time – critical
computations are considered, a close mapping between the
design architecture of the system under construction and
the actual hardware architecture is necessary in order to
achieve the required performance. This section presents
some basic design rules and concepts found appropriate for
our environment.

The activity of the application is split up into several
sub activities–the components of the system-which are be
classified with regard to their responsibilities into following
types: interface components are responsible for connecting
the systems with external devices, sensors or actuators.
Interface components are always implemented in hardware,
since in this architecture only the FPGA communicate with
the environment. Thread component are activities
responsible for performing the computation parts of the
application. The control components supervise all activities
in the system.

3.1. Events

Whenever a situation occurs in an embedded control system
that requires an action from the application, this situation is
called an event. Frequent events are sensors sending new
values, timers reaching zero or variables being written.
Typical actions associated to events are polling of data from
sensors, computing a new system state or computing new
actuator values. Figure 3: A Real-time Symbolic Timing Diagram

Waveforms

Symbolic Event Strong Constraint

Weak Constraint

Req

Ack

Hardware and Software Co-Synthesis Environment for Embedded Systems 205

4.1. Partitioning

In the partitioning step the user annotates each activity of
the activity-chart with a thread. These steps are not
automated. The manual partitioning at this design level gives
the best result.

After threads and hardware components are identified,
they must be mapped to the architecture. As first step,
mapping of hardware components to FPGAs and software
components to contexts will be done manually.

4.2. Interface Analysis

The interface analysis step is used twice in the code
generation process. In the first stage, the dataflow between
components is determined. The result of this stage is used to
guide the mapping tools to keep communication overhead
low.

In the second stage, back-annotation from the mapping
tools to produce detailed symbol tables as input for the
interface generators is used. These symbols tables contain
information about the dataflow between the components,
about the mapping of components to the architecture and
about resource allocation on the dual-ported RAM.

4.3. Code Generation

In the semantics of statecharts, all parallel automata are
executed step-synchronous. This model is obviously not
suitable for distributed systems. Since performance is critical
for the given target applications, communication and
synchronization overhead as far as possible should be
reduced. Therefore, an asynchronous execution model for
state chart/timing-diagram specifications is used. For the
threads, the State mate code generator to synthesize code to
wrap this code and produce hardware-controllable threads
is used.

RTSTDs are more expensive and concise when dealing
with complex timing constraints than statecharts. RTSTDs
is very versatile, rendering them a natural choice for
specification of control components.

3.3. Controlling Thread Execution

To specify control of threads with timing diagrams, special
type thread is added to the language of RTSTDs, and some
predicates are defined start, stop, started, stopped for
variables of type thread (Figure 3). start (t) does not imply
started (t), and neither does stop (t) imply stopped (t). If t is
stopped, then start (t) causes t to change its state to started
eventually, and analogously causes stop (t) the thread t to
stop, but not necessarily in the next step.

3.4. Scheduling

In general, the specification of thread control with RTSTDs
induces only a partial order between threads. The task of
the scheduler is to refine this order for the n-processor
MSPARC architecture.

The simplest approach for this refinement is to execute
threads in the order of their activation. This scheduling
strategy, called naive scheduling, has the advantages that
the user does not have to worry about scheduling at all, since
the scheduler is synthesized without user intervention
as part of the timing diagram synthesis. A disadvantage
of this approach is that certain specifications become
unimplementable simply because the naïve scheduling could
choose an order that would lead to a violation of timing
constraints.

Another approach, called extended built-in scheduling,
is to let the built-in scheduling mechanism of the MSPARC
do the scheduling between all threads allocated on one
node.Internode scheduling is done as before. Advantages
and disadvantages of the approach are more or less the same
as in the naïve approach.

The third scheduling strategy is called speed scheduling
.In addition to the activation of threads a minimal (required)
execution speed for them is specified by the user with a
special predicate speed (t, s) which assigns speed s to thread
t. Specifications which are not implement able under the
naïve scheduling strategy become implement able if the sum
of execution speeds of parallel threads allocated on one
processor dose not exceed the CPU’s total execution speed.

Currently both naive and speed scheduling are
supported the formal allowing for a comfortable
specification of less stringent real time specification the later
being better suited for very time–critical and highly
concurrent specifications.

4. CODE GENERATION

Figure 4, shows the code generation process. The design
starts with the statechart and timing diagram specifications.
A closer look at synthesis steps are as follows:

Figure 4: Code Generation Process

Specification

Partitioning/Mapping

Interface
Analysis

Code
Generation

Interface
Generation

Synthesis

Download

Tiroing Diagram Editor STATEMATE

HW SW

Interface
Analyset

Interface
Analyset

Interface
Analyset

VHDL
Generator

Code
Generator

Configuration
Generator

Thread/Interface
Generator

VHDL Synthesis C Compiler

206 International Journal of Electronics Engineering

To synthesize thread control expression from RTSTDs,
the ICOS synthesis tools create for each thread t an output
signal active_t and an input signal done_t. During the
mapping and the analysis stage ,a symbol table is produced
where these signals are declared as thread control signals
and mapping to specific pins of the selected FPGA. The
interface generator then uses this symbol table to map these
signals to the ports of the MSPARC processor on which t is
allocated, and produces additional code to set the switch
signal of this processor. If t should be controlled by a
scheduler, than active_t and done_t together with additional
scheduling attributes have to be connected with the hardware
part of scheduler.

4.4. Interface Generation

The hardware and software interface establishes the dataflow
from threads to the hardware components and vice-versa.
In our architecture, the DPR is used for hardware and
software communication .The interface analyzer computes
the set of communication variables and allocates memory
for these variables in the DPR.

Communication is always initiated by a value change
of a communication variable. If a value change occurs, a
callback function is invoked to update the DPR with the
new value of the variable. For the software components,
invocation of callback functions is managed by the State
mate C-code machine, where as in hardware, observer
processes are used to detect change of values.

Threads update their local memory at the beginning of
their execution by copying the relevant data from the DPR.
The controller updates its local memory when threads
terminate. To accomplish this, the interface generator has
to create update-code for each thread.

5. A Case Study

Our first case study is a simple air conditioning system for
automobiles, completely specified with activity chart and
statecharts. Figure 5, shows the top-level activity-chart.

The system controls four stepper motors which
are connected with a serial bus, called MI-bus. The
MI_Controller component is responsible for sending and
receiving messages, SequenceGen creates message
sequences, which set the motors into a given position. These
two activities are the interface components of the system.
ProgControl is connected with the MI interface and several
sensors and controls five air-condition programs, the threads
of the system. The tasks of these programe are to calculate
a new position for the steppermotors. They get their inputs
from the sensors and the program controller.

In this case study we used the FPGA board which was
connected with a workstation, and a serial interface to realize
data-communication between workstation and FPGA board.
Since this interface does not allow any FPGA-initiated
actions, dataflow from hardware to software had to
implement by polling and additional activity polls the

contents of the interface every n steps and updates the
memory of the State mate machine accordingly. Since we
do not use multi-threading at this stage, we implemented
the program controller as a software component.

6. CONCLUSION

In this paper, co synthesis approach for rapid prototyping
of embedded system is presented The main features of this
system are, first, that programming is done completely with
graphical specification languages, second, that interface
code between hardware and software components is
synthesized automatically from the specification, and third,
that a multi-processor multi-threaded hardware architecture
for short response times is used.

REFERENCES

[1] T. Bienmiiller, A. Metzner, and A. Miksehi, ‘Traps and Fast
Context Switches in a Multithreaded Environment”. A
SPARC, Technical Report, University of Oldenburg,
Germany, (1997).

[2] G. Borriello, ‘Formalised Timing Diagrams’, In the
Europian Conference on Design Automation. IEEE
Computer Society Press, (1992).

[3] R. Ernst, J. Henkel and T. Benne, ‘Hardware/Software Co-
synthesis for Microcontrollers’, IEEE Design and test
Computers, (1993).

[4] K. Feyerabend and B. Josko, ‘A Visual Formalism for Real
Time Requirement Specification’, (1997).

[5] K. Feyerabend and R. Schlor, ‘Hardware Synthesis from
Requirement Specification of Computn.’ (1996).

[6] M. Franzle, K. Liith, ‘Compiling Graphical Real-Time
Specification into Silicon’, (1998).

[7] R. Gupta, G. De Mithil, ‘Hardware/Software Co-synthesis
for Digital System’ (1993).

[8] D. Harel H. Lachover, A. Naamad, A. Pnneli, M. Polite R.
Sherman, M. Trakhten, ‘STATEMATE: An Environment for
the Development of Complex Reactive Systems’, (1990).

[9] D. Harel, ‘Statecharts: A Visual Formalism for Complex
Systems’. (1987).

[10] G. Koch, U. Kebschiill, W. Rosenstiel, ‘A Prototyping
Environment for Hardware/Software COBRA project’.
(1994).

[11] F. Korf and R. Schlor, ‘Interface Controller Synthesis from
Requirement Specifications’. (1994).

[12] K. Liith, A. Metzner, T. Peikenkamp, and J. Risan, ‘Events
Approach to Rapid Prototyping for Embedded Control
Systems’. (1997).

[13] A. Mikschi and W. Damm, ‘MASPARC: A Multithreaded
Spare’. In L. Bonge, P. Fraigniand, A. Mignotte and Y.
Robert, Parallel Processing, (1996).

[14] Sparc International Inc. The Sparc Architecture Manual
Version 7, (1990).

Hardware and Software Co-Synthesis Environment for Embedded Systems 207

[15] L. Stoica, H. Abdel Wahab, and K. Jeffay, ‘On the Duality
between Resources Reservation and Proportional Share
Allocation, (1997).

[16] Karsen Luth Jurgen Niehaus, Thomas Peikenkamp Carl von
Ossietzky University, Oldenburg. HW/SW Co-synthesis
using State Charts and Symbolic Timing Diagrams, (1990).

[17] S. Bhattacharya, ‘HW/SW Co-synthesis using DSP
Microprocessor’, (2001).

[18] R. Niemann, ‘Peter Marwedel’. HW/SW Partitioning using
Integer Programming, (1996).

[19] Sparc International Inc. ‘The Sparc Architecture Manual
Version 8’. Prentice Hall Englewood Cliff, NJ, (1992).

